logo-hal

HALathon 2021 UPPA

Vos documents déjà déposés

# Type Année Titre doi Notice HAL accès HAL label OA
1 ART 2020 A dual approach to Kohn-Vogelius regularization applied to data completion problem 10.1088/1361-6420/ab7868 hal-02310869 fichier openaccess
2 ART 2019 A New Method for the Data Completion Problem and Application to Obstacle Detection 10.1137/18M1186071 hal-02127606

label OA

openaccess
3 ART 2019 Shape sensitivity analysis for elastic structures with generalized impedance boundary conditions of the Wentzell type -Application to compliance minimization hal-01525249 fichier
4 ART 2019 On a decomposition formula for the proximal operator of the sum of two convex functions hal-01558522 fichier
5 ART 2017 On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace's equation 10.1051/cocv/2017056 hal-01624524 fichier openaccess
6 ART 2017 Optimal location of resources for biased movement of species: the 1D case hal-01514344 fichier arxiv
7 ART 2016 Flip procedure in geometric approximation of multiple-component shapes – Application to multiple-inclusion detection hal-01710845 fichier
8 ART 2016 New transmission condition accounting for diffusion anisotropy in thin layer applied to diffusion MRI 10.1051/m2an/2016060 hal-01902194

label OA

openaccess
9 ART 2016 Stability estimates for Navier-Stokes equations and application to inverse problems 10.3934/dcdsb.2016052 hal-01364124 fichier arxiv
10 ART 2016 On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives hal-01191099 fichier
11 ART 2016 New Transmission Condition Accounting For Diffusion Anisotropy In Thin Layers Applied To Diffusion MRI 10.1051/m2an/2016060 hal-01110298 fichier openaccess
12 ART 2013 A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid hal-00678036 fichier
13 ART 2013 Stability of critical shapes for the drag minimization problem in Stokes flow hal-00780730 fichier
14 ART 2013 Instability of an inverse problem for the stationary Navier-Stokes equations hal-00696174 fichier
15 ART 2013 Shape optimization methods for the Inverse Obstacle Problem with generalized impedance boundary conditions hal-00780735 fichier
16 ART 2012 Localisation of small obstacles in Stokes flow hal-00678037 fichier
17 ART 2011 Detecting an obstacle immersed in a fluid by shape optimization methods hal-00583469 fichier
18 HDR 2018 Contributions in shape optimization and inverse problems for some partial differential equations tel-01973336 fichier
19 THESE 2012 Détection d'un objet immergé dans un fluide tel-00716902 fichier
20 UNDEFINED 2020 Shape derivatives of eigenvalue functionals. Part one: scalar problems hal-02511124 fichier
21 UNDEFINED 2019 The derivative of a parameterized mechanical contact problem with a Tresca's friction law involves Signorini unilateral conditions hal-02368180 fichier

Références complètes

  1. Fabien Caubet, Jérémi Dardé. A dual approach to Kohn-Vogelius regularization applied to data completion problem. Inverse Problems, IOP Publishing, 2020, ⟨10.1088/1361-6420/ab7868⟩. ⟨hal-02310869⟩
  2. Fabien Caubet, Marc Dambrine, Helmut Harbrecht. A New Method for the Data Completion Problem and Application to Obstacle Detection. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2019, 79 (1), pp.415-435. ⟨10.1137/18M1186071⟩. ⟨hal-02127606⟩
  3. Fabien Caubet, Djalil Kateb, Frédérique Le Louër. Shape sensitivity analysis for elastic structures with generalized impedance boundary conditions of the Wentzell type -Application to compliance minimization. Journal of Elasticity, Springer Verlag, In press, Journal of Elasticity. ⟨hal-01525249⟩
  4. Samir Adly, Loïc Bourdin, Fabien Caubet. On a decomposition formula for the proximal operator of the sum of two convex functions. Journal of Convex Analysis, Heldermann, 2019, 26 (2), pp.699-718. ⟨hal-01558522v2⟩
  5. Fabien Caubet, Jérémi Dardé, Matías Godoy. On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace's equation. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2017, ⟨10.1051/cocv/2017056⟩. ⟨hal-01624524⟩
  6. Fabien Caubet, Thibaut Deheuvels, Yannick Privat. Optimal location of resources for biased movement of species: the 1D case. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2017, 77 (6), pp.1876--1903. ⟨hal-01514344v2⟩
  7. Pierre Bonnelie, Loïc Bourdin, Fabien Caubet, Olivier Ruatta. Flip procedure in geometric approximation of multiple-component shapes – Application to multiple-inclusion detection. SMAI Journal of Computational Mathematics, Société de Mathématiques Appliquées et Industrielles (SMAI), 2016, 2, pp.255-276. ⟨hal-01710845⟩
  8. Fabien Caubet, Houssen Haddar, Jing Rebecca Li, Dang Van Nguyen. New transmission condition accounting for diffusion anisotropy in thin layer applied to diffusion MRI. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, pp.1279--1301. ⟨10.1051/m2an/2016060⟩. ⟨hal-01902194⟩
  9. Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2016, ⟨10.3934/dcdsb.2016052⟩. ⟨hal-01364124⟩
  10. Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2016, 10 (2), pp.327--367. ⟨hal-01191099⟩
  11. Fabien Caubet, Houssem Haddar, Jing-Rebecca Li, Dang Van Nguyen. New Transmission Condition Accounting For Diffusion Anisotropy In Thin Layers Applied To Diffusion MRI. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, ⟨10.1051/m2an/2016060⟩. ⟨hal-01110298v2⟩
  12. Fabien Caubet, Marc Dambrine, Djalil Kateb, Chahnaz Zakia Timimoun. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2013, 7 (1), pp.123--157. ⟨hal-00678036⟩
  13. Fabien Caubet, Marc Dambrine. Stability of critical shapes for the drag minimization problem in Stokes flow. Journal de Mathématiques Pures et Appliquées, Elsevier, 2013, 100 (3), pp.327--346. ⟨hal-00780730⟩
  14. Fabien Caubet. Instability of an inverse problem for the stationary Navier-Stokes equations. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2013, 51 (4), pp.2949--2975. ⟨hal-00696174⟩
  15. Fabien Caubet, Marc Dambrine, Djalil Kateb. Shape optimization methods for the Inverse Obstacle Problem with generalized impedance boundary conditions. Inverse Problems, IOP Publishing, 2013, 29 (11). ⟨hal-00780735⟩
  16. Fabien Caubet, Marc Dambrine. Localisation of small obstacles in Stokes flow. Inverse Problems, IOP Publishing, 2012, 28 (10). ⟨hal-00678037⟩
  17. Mehdi Badra, Fabien Caubet, Marc Dambrine. Detecting an obstacle immersed in a fluid by shape optimization methods. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2011, 21 (10), pp.2069--2101. ⟨hal-00583469⟩
  18. Fabien Caubet. Contributions in shape optimization and inverse problems for some partial differential equations. Mathematics [math]. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), 2018. ⟨tel-01973336⟩
  19. Fabien Caubet. Détection d'un objet immergé dans un fluide. Optimisation et contrôle [math.OC]. Université de Pau et des Pays de l'Adour, 2012. Français. ⟨tel-00716902⟩
  20. Fabien Caubet, Marc Dambrine, Rajesh Mahadevan. Shape derivatives of eigenvalue functionals. Part one: scalar problems. 2020. ⟨hal-02511124⟩
  21. Samir Adly, Loïc Bourdin, Fabien Caubet. The derivative of a parameterized mechanical contact problem with a Tresca's friction law involves Signorini unilateral conditions. 2019. ⟨hal-02368180⟩