logo-hal

HALathon 2021 UPPA

Vos documents déjà déposés

# Type Année Titre doi Notice HAL accès HAL label OA
1 ART 2016 Sard theorems for Lipschitz functions and applications in optimization 10.1007/s11856-016-1308-7 hal-01336328 fichier openaccess
2 ART 2015 Computing quantities of interest for random domains with second order shape sensitivity analysis 10.1051/m2an/2015012 hal-02128149

label OA

openaccess
3 ART 2013 The Morse-Sard theorem for Clarke critical values 10.1016/j.aim.2013.03.024 hal-00866954

label OA

openaccess
4 UNDEFINED 2006 Unilateral and Bilateral Characterizations of Increasing and Strictly Increasing Maps hal-00423387 fichier

Références complètes

  1. Luc Barbet, Marc Dambrine, Aris Daniilidis, Ludovic Rifford. Sard theorems for Lipschitz functions and applications in optimization. Israël Journal of Mathematics, Hebrew University Magnes Press, 2016, 212 (2), pp.757-790. ⟨10.1007/s11856-016-1308-7⟩. ⟨hal-01336328⟩
  2. Luc Barbet, Aris Daniilidis, Ludovic Rifford, Marc Dambrine, Helmut Harbrecht, et al.. Computing quantities of interest for random domains with second order shape sensitivity analysis. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2015, 49 (5), pp.1285-1302. ⟨10.1051/m2an/2015012⟩. ⟨hal-02128149⟩
  3. Luc Barbet, Marc Dambrine, A. Daniilidis. The Morse-Sard theorem for Clarke critical values. Advances in Mathematics, Elsevier, 2013, 242, pp.217-227. ⟨10.1016/j.aim.2013.03.024⟩. ⟨hal-00866954⟩
  4. Luc Barbet. Unilateral and Bilateral Characterizations of Increasing and Strictly Increasing Maps. 2006. ⟨hal-00423387⟩